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Abstract
Dimensional continuation is employed to compute the energy loss rate for a
non-relativistic particle moving through a highly ionized plasma. No restriction
is made on the charge, mass, or speed of this particle, but it is assumed that
the plasma is not strongly coupled in that the dimensionless plasma coupling
parameter g = e2κD/4πT is small, where κD is the Debye wave number.
To leading order in this coupling, dE/dx is of the generic form g2 ln[g2C].
The prefactor of the logarithm is well known. We compute the constant C
under the logarithm exactly. Our result differs from approximations given in
the literature, with differences in the range of about 20% for cases relevant to
inertial confinement fusion experiments.

PACS number: 52.25.Fi

(Some figures in this article are in colour only in the electronic version)

1. dE/dx and the Coulomb log

The stopping power of plasma component b for projectile p is of the form

dEb

dx
= e2

p e2
b

4π

nb

mb v2
p

ln �b = e2
p

4π

κ2
b

βbmbv2
p

ln �b, (1)

where the Coulomb logarithm ln �b involves a ratio of short- and long-distance length scales.
To compute ln �b, we employ the method of dimensional continuation [1]. To introduce this
method, we consider the Coulomb potential φν(r) of a point source in ν spatial dimensions:
φν(r) ∼ 1/rν−2. Clearly the long- and short-distance behaviour of φν depends on the spatial
dimensionality ν. In high ν, short-distance (hard) interactions are accentuated, while in low ν

the large-distance (soft) physics predominates.
For Coulomb interactions, ν = 3 is special in that neither hard nor soft processes are

dominant. For ν < 3, the soft physics is predominant, and for ν > 3 the hard processes are
dominant. The energy loss for ν > 3, dEB/dx is obtained from the Boltzmann (B) equation,
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and it contains a pole (ν − 3)−1 that reflects an infrared divergence in the scattering process
when ν → 3+. The energy loss for ν < 3, dELB/dx is obtained from the Lenard–Balescu
(LB) kinetic equation, and it contains a pole (3 − ν)−1 that reflects an ultraviolet divergence
when ν → 3−. The stopping power to subleading order is therefore

dE

dx
= lim

ν→3

(
dELB

dx
+

dEB

dx

)
, (2)

and it is completely finite. Hence the two poles must cancel. The dependence of the residues of
the poles on ν brings in a logarithm of the ratio of the relevant short- and long-distance length
scales, which is precisely the Coulomb logarithm. The method of dimensional continuation
expressed in equation (2) is somewhat subtle, especially the fact that adding the ν < 3 and
ν > 3 pieces yields precisely the leading and sub-leading behaviour. We refer the reader to the
simple example in appendix A of [1], which clearly illustrates the validity of this technique.

2. Collective excitations: Lenard–Balescu equation for ν < 3

The soft physics is described to leading order in the plasma density by

∂

∂t
fa(pa) = −

∑
b

∂

∂pa

· Jab, (3)

which is the Lenard–Balescu kinetic equation for plasma species a and b, where

Jab = e2
ae

2
b

∫
dνk

(2π)ν

k
(k2)2

π

|ε(k, va · k)|2

×
∫

dνpb

(2πh̄)ν
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[
∂

∂pb

− ∂
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]
fa(pa)fb(pb), (4)

with va = pa/ma and vb = pb/mb. The collective behaviour of the plasma enters through its
dielectric function

ε(k, ω) = 1 +
∑

c

e2
c

k2

∫
dνpc

(2πh̄)ν

1

ω − k · vc + iη
k · ∂
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fc(pc), η → 0+. (5)

The rate of kinetic energy loss of species a to species b is given by

dELB
ab
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=

∫
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a

2ma

∂
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· Jab. (6)

We evaluate this for the case in which species a is a single projectile of mass mp and velocity
vp, fa(pa) = (2πh̄)νδ(ν)(pa − mpvp) and the distribution function fb(pb) for plasma species
b is Maxwell–Boltzmann at temperature Tb = 1/βb. With dx = vp dt ,

dELB
b

dx
= e2

p

4π

1

βbmpv2
p

�ν−2

2π

(
K

2π

)ν−3 1

3 − ν

∫ 1

0
du(1 − u)(ν−3)/2ρb(vpu1/2)

[
βbMpbv

2
p − 1

u

]

+
e2
p

4π

i

2π

∫ +1

−1
d cos θ cos θ

ρb(vp cos θ)∑
c ρc(vp cos θ)

F (vp cos θ) ln

(
F(vp cos θ)

K2

)

− e2
p

4π

i

2π

1

βbmpv2
p

ρb(vp)∑
c ρc(vp)

[
F(vp) ln

(
F(vp)

K2

)
− F ∗(vp) ln

(
F ∗(vp)

K2

) ]
,

(7)

where Mpb = mp + mb is the total mass, F(v) = k2 [ε(k, kv) − 1] and ρb(v) =
κ2

b

√
βbmb/2πv exp(−βbmbv

2/2). Here �ν is the area of a unit sphere in ν dimensions
and K is an arbitrary wave number whose dependence cancels in the limit (2).
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Figure 1. The energy E(x) (in MeV) of an α particle with initial energy E0 = 3.54 MeV versus
the distance x (in µm) travelled through an equal molal DT plasma. Note that E(x) is obtained by
inverting x = ∫ E

E0
dE(dE/dx)−1, where the stopping power dE/dx has been expressed as a function

of energy. The plasma temperature is T = 3 keV and the electron number density is ne = 1025

cm−3. The plasma coupling is small, g = 0.011, and so our calculation (BPS) is essentially exact.
Our result is shown by the solid curve. The work of Li and Petrasso [2] is often used in laser fusion
simulations. Their result (LP) is shown by the dashed line. Note that the difference in the total
ranges between our result and that of Li and Petrasso of about 5 µm is a little larger than 20%.

3. Hard collisions: Boltzmann equation for ν > 3

Hard collisions in the plasma density are described by the Boltzmann equation, giving

dEB
b

dx
= 1

vp

∫
dνpb

(2πh̄)ν
fb(pb)vpb

∫
dσpb

1

2
mp

[
v′2

p − v2
p

]
, (8)

where vpb = |vp − vb|, and dσpb is the full quantum-mechanical differential cross section
for scattering of the projectile (p) from the initial velocity vp = pp/mp to the final velocity
v′

p off a plasma particle (b). Straightforward kinematical manipulations exploiting the axial
symmetry of the scattering produce the form

dEB
b

dx
= 1
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∫
dνpb
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P · p
2p2Mpb

vpb

∫
dσpb q2, (9)

in which P is the total momentum of the centre of mass, p is the relative momentum in the
centre of mass and q is the momentum transfer.

The classical cross section in ν dimensions is dσ C
pb = �ν−2 Bν−2 dB, where B is the

classical impact parameter. Some calculation gives∫
dσ C

pbq
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4
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]
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with mpb = mpmb/Mpb being the reduced mass. Placing the result (10) in equation (9) yields
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Figure 2. The α particle dE(x)/dx (in Mev/µm) versus x (in µm) split into separate ion (spiked
curves) and electron components (softly decreasing curves). The area under each curve gives the
corresponding energy partition into electrons and ions. For our results (BPS), the total energy
deposited into electrons is Ee = 3.16 MeV and into ions is EI = 0.38 MeV, while LP gives
ELP

e = 3.11 MeV and ELP
I = 0.43 MeV. These energies sum to the initial α particle energy of

E0 = 3.54 MeV. Note that BPS has a longer α particle range and deposits less energy into ions
than LP. Both observations would tend to make fusion more difficult to achieve for BPS than
for LP.

Making the decomposition
∫

dσpbq
2 = ∫

dσ C
pbq

2 +
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)
q2 expresses
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/
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dx is the quantum correction to equation (11).

The integral
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q2 is most easily evaluated by first calculating
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where dσ B
pb is the Born approximation to dσpb , and then subtracting the contribution∫ (
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q2. Inserting the correction vpb
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sinh αbu
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where ψ(z) = d ln �(z)/dz, Re denotes the real part, αb ≡ βbmbv
2
p and ηb ≡ epeb/4πh̄vp.

4. Results

The total stopping power is the sum of the contributions from large-distance collective
excitations dELB/dx and from short-distance hard collisions dEB/dx, that is, the sum over
species b of equations (7), (11) and (12). The poles at ν = 3 and the ln K terms cancel.
Our result for dE/dx is generically of the form n (ln n + C) in the plasma density n, and it is
accurate to all orders in the quantum parameter ηb. Figures 1 and 2 illustrate our result with
an example that is relevant to the DT plasmas in laser fusion capsules.
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